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Algebra I

Chapter 2: The System of Integers

2.1 Axiomatic definition of Integers.

The first algebraic system we encounter is the integers. Here we list the axioms that determine
the system of integers, along with many simple consequences of those axioms. Most of those
consequences will be stated without proof, or left as exercises; our main purpose in this section
is to survey the facts about the integers you can safely assume in later discussions. Besides, the
missing proofs will be handled later on in a more general context (the theory of rings).

The integers are a system (Z,+, · ) which consists of a set Z equipped with two operations
(+) and (·) that map Z×Z → Z. We now identify the properties these operations must possess
to become the familiar system of integers. At first we shall consider a more general set R
equipped with two operations (+) and (·) from R × R → R, imposing axiomatic conditions in
stages until we arrive at the axioms characteristic of the system of integers.

2.1.1 Axioms I: Commutative Ring. The system (R,+, · ) is a commutative ring with
identity if the operations have the following properties.

A.1. (x + y) + z = x+ (y + z) (addition is associative)

A.2. x+ y = y + x (addition is commutative)

A.3. There exists an element 0 ∈ R such that 0 + x = x = x + 0 for all x ∈ R.
This is the “zero element” of the system.

A.4. Every element x ∈ R has an “additive inverse,” denoted by −x, which has
the property x+ (−x) = 0 = (−x) + x.

Later on we will see that this set of axioms, which govern the (+) operation only, make (R,+)
into what algebraists would call a commutative group.

Next we add some axioms concerning multiplication and its interaction with addition.

M.1. (x · y) · z = x · (y · z) (multiplication is associative)

M.2. x · y = y · x (multiplication is commutative)

M.3. There exists in R a “multiplicative identity element,” denoted by 1 (or some-
times 1

R
), which has the characteristic property that 1 · x = x = x · 1 for all

x ∈ R.

M.4. x · (y + z) = x · y + x · z (distributive law)

M.4′ (x+ y) · z = x · z + y · z (distributive law)

M.5. 1 6= 0 (we exclude the “trivial ring,” which has 0 as its only element) �

Below we list important consequences of this set of axioms. You will recognize many familiar
attributes of the integers, but be aware that every one of these ancillary properties must be

proved from the fundamental properties listed in Axioms I. That is not always a simple matter.
It is suggested that you try making your own proofs for the items marked with (∗) in the
following list.

Note: Hereafter, in solving any Exercise you are allowed to invoke all results stated up to that

point, either in the text or as Exercises.

2.1.2 Consequences of Axioms I. For a commutative ring with identity (R,+, · ) we have

1. The xero element 0 is unique: If 0′ is any other element in R such that
x+ 0 = x = 0 + x for all x ∈ R, then 0′ = 0.

Proof: Look at 0 + 0′. By A.3 we get 0′ = 0 + 0′ = 0. �
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2. Likewise, the additive inverse −x is also unique: If x is fixed and u is any
other element in R such that u+ x = 0 = x+ u, then u = −x.
Proof: Here “−x” is any element u such that u + x = 0 = x + u. If u, u′

are two such elements, look at the combination (u′ + x) + u = u′ + (x+ u).
We get

u = 0 + u = (u′ + x) + u = u′ + (x + u) = u′ + 0 = u′

as required. �

3.∗ The multiplicative identity element 1 is unique: if 1′ is any other element in
R such that 1′ · x = x = x · 1′ for all x, then 1′ = 1.

4.∗ Consider the “additive inverse map” given by J(x) = −x. If you apply this
map twice you get back where you started: −(−x) = x for all x ∈ R.
Hint: Think of “−x” as the unique element that makes � + x = 0 = x + �

when placed in the empty box �. What can you put in the box to make
� + (−x) = 0?

5.∗ 0 · x = 0 for all x ∈ R.

Proof: This last is not an axiom! Its proof from the axioms is also tricky. Start with the
identity 0 + 0 = 0 (by A.3) and observe that

0 · x = (0 + 0) · x = 0 · x+ 0 · x (by M.4)

Adding −(0·x) to both sides we get

0 = 0 · x+ (−(0 · x)) ( definition of −a)
= [ 0 · x+ 0 · x ] + (−(0 · x)) (apply previous identity)

= 0 · x+ [ (0 · x) + (−(0 · x)) ] (by A.1)

= 0 · x+ 0 (by A.3)

= 0 · x �

6.∗ If −1 is the additive inverse of 1, then −x = (−1) · x for any x ∈ R.

Hint: See Hint to #4, noting that (−1) · x +x = [(−1) + 1] · x, etc.

Moral: Once you have identified the additive inverse −1 of the identity element you get −x for
any other element if you multiply x by (−1).

2.1.3 Exercise. Assuming the properties (1.)-(6.) have already been established, give a proof
of the following crucial fact: In any commutative ring,

(1) (−1)2 = 1

where −1 is the additive inverse of the identity element 1.
Hint: Add (−1) to both sides. �

As immediate consequences of (1) and associativity of multiplication we have

7.∗ (−x) · y = x · (−y) = −(x · y) for all x, y ∈ R

8.∗ (−x) · (−y) = x · y for all x, y ∈ R. �

Differences x − y. We define the difference x − y in terms of the (+) operation, letting
x− y + x+ (−y). �
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The rules in Axioms I fall far short of characterizing the integers. The system of rationals Q

also satisfies these axioms, as does the following algebraic system that could hardly be mistaken
for the integers.

2.1.4 Exercise. Let R = {0, 1} be a two-element set with two operation (+) and (·) defined
by setting

1 + 1 = 0 1 + 0 = 0 + 1 = 1 0 + 0 = 0

1 · 1 = 1 1 · 0 = 0 · 1 = 0 0 · 0 = 0

Verify that (R,+, · ) satisfies Axioms I.
Note: These are the addition and multiplication laws for the system (Z2,+, · ) �

One thing missing from Axioms I is any mention of “order properties” such as x < y. Since
order is an important attribute of the system of integers it’s not surprising that Axioms I are
not enough. What is surprising is that the order properties of the integers, which most people
think of as geometric properties, can be described entirely in algebraic terms.

2.1.5 Axioms II: Order Axioms. Let (R,+, · ) be a commutative ring with identity 1 = 1
R
.

This system is said to be an ordered ring if there exists a subset P = P
R

⊆ R with the
following properties.

O.1. R is a disjoint union R = −P ∪ {0} ∪ P of the sets P, −P = {−x : x ∈ P},
and the zero element.

O.2. P + P = {x+ y : x, y ∈ P} ⊆ P (“positive + positive = positive”)

O.3. P · P = {x · y : x, y ∈ P} ⊆ P (“positive · positive = positive”)

We write x > 0 if x ∈ P , x < 0 if x ∈ −P . It may help to note an alternative way of thinking
about the set −P of negative elements:

x < 0 ⇔ −x > 0

Proof: We have x ∈ P ⇒ −x ∈ −P by definition of −P . Conversely x ∈ −P means
that x = −y for some y ∈ P , but then −x = −(−y) = y is in P by #4 above. Thus
x ∈ −P ⇔ −x ∈ P . �

We define the symbol x > y to mean that x−y = x+(−y) > 0. Points in the set P are referred
to as positive elements in R; points in −P are the negative elements.

Many important properties must now be derived. We omit most discussion, but you might
try proving the items marked by ∗ on your own. (If you do, assume all previous statements
have been proved, so you can use any of them in dealing with the problem at hand.)

2.1.6 Consequences of the Order Axioms. Any system (R,+, · , >) satisfying Axioms I-II
has the following properties.

1. Given an x ∈ R exactly one of the following possibilities is true: (i) x < 0,
(ii) x = 0, (iii) x > 0.

2. 1 > 0 in any commutative ordered ring with identity.

Statement (1.) recapitulates Axiom O.1. Statement (2.) is so important, and its proof is such a
good illustration of the interplay between algebraic and order axioms, that we give the details.
It also illustrates the idea of “proof by contradiction.”

Proof of (2): By Trichotomy exactly one of the following statements must be true

(i) 1 < 0 (ii) 1 = 0 (iii) 1 > 0
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Statement (ii) is precluded by (M.5) and if (iii) holds we win. Our result follows
if we can exclude the possibility (i), which we do “arguing by contradiction.” So,
we suppose (i) is true and explore the consequences, hoping to precipitate a con-
tradiction. If 1 < 0 then −1 ∈ P , as noted above. Thus we would conclude that
−1 > 0. But we also know that (−1)2 = 1, by 2.1.3, from which it would follow
that 1 ∈ P ·P = P so 1 > 0. We would then arrive at an impossible conclusion (a
contradiction)

1 < 0 (by hypothesis) and 1 > 0

by applying the Axioms and the rules of logic based on the premise that 1 < 0. The
only viable conclusion is that 1 > 0, as claimed. �

Returning to our list of consequences, we have

3. x > 0 and y > 0 =⇒ xy > 0 and x+ y > 0 (a recap of O.2,O.3)

4.∗ x > y =⇒ x+ c > y + c, for all c ∈ R

This says: an inequality remains valid if you add any number to both sides.

5.∗ x > y and y > z =⇒ x > z (transitivity of the order relation)

6. x 6= 0 =⇒ x2 > 0

7. c > 0 and x > y =⇒ xc > yc and c < 0 =⇒ xc < yc (reverses inequality)

This says: an inequality remains valid if you multiply both sides by a positive number.

8.∗ The usual “Rule of Signs” holds:

x > 0 and y > 0 ⇒ xy > 0 – i.e. (+) · (+) = (+)

x > 0 and y < 0 ⇒ xy < 0 – i.e. (+) · (−) = (−)

x < 0 and y < 0 ⇒ xy > 0 – i.e. (−) · (−) = (+)

9. x > y ⇐⇒ −x < −y �

2.1.7 Proposition. If a system (R,+, ·, >) satisfies Axioms I-II, then

(a) No Zero Divisors: If xy = 0, then either x = 0 or y = 0 (or both).

(b) Cancellation Law: If a 6= 0, ax = ay, then x = y.

Proof: Obviously the product is zero if either x or y is zero. Otherwise, x, y 6= 0 and we may
multiply both sides by (−1) as necessary to make x, y > 0. Then xy > 0 by Axiom O.3.

For (b), we have ax = ay ⇔ 0 = ax− ay = a(x− y) and since a 6= 0 we must have x− y = 0
and x = y, as required. �

2.1.8 Exercise. In an ordered ring (R,+, ·, >) suppose we have a > b and c > d.

(a) Do we have ac > bd? Prove or give a counterexample.

(b) Suppose a > b and we assume that a > 0, b > 0. If we do not impose any
conditions on c, d except c > d, do we get ac > bd? �

*2.1.9 Exercise. In an ordered ring, show that

(2) If a > 0 and b > 0 then a > b⇐⇒ a2 > b2

Hint: (b2 − a2) = (b− a)(b+ a). Use Rule of Signs. �

*2.1.9A Exercise. If a, b > 0 in a commutative ordered ring with identity, prove that we have
a > b⇐⇒ a3 > b3.
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Hint: For (⇐) write a3 − b3 = (a− b)(· · · ).
Note: Do you think you can prove a > b⇐⇒ ak > bk for arbitrary exponents k ∈ N? �

*2.1.9B Exercise. Prove that the commmutative ring of complex numbers C cannot be
equipped with a relation “z > 0” that satisfies the order axioms. �

The following example introduces a commutative ring with identity that plays a large role in
modern algebra; it also happens to have a natural order relation f > 0.

2.1.9C Example (The Ring of Polynomials R[x]). A polynomial f ∈ R[x] is a formal
sum

f(x) = a01- + a1x+ a2x
2 + . . .+ amx

m + . . .

involving powers xk of an unknown x, in which only finitely many coefficients ck ∈ R are
nonzero. The symbols “xk” in this expression are mere placeholders. All the informations in
one of these formal sums resides in the symbol string of coefficients (a0, a1, a2, . . .) in which x
does not appear. The degree of a nonzero polynomial is deg(f) = m if amx

m is the highest
power with am 6= 0. There are two special cases:

• We interpret x0 = 1- to be the constant polynomial with a0 = 1, a1 = 0, a2 = 0, . . .

• The zero polynomial, with coefficients 0 = a0 = a1 = . . ., is exceptional, and many
statements about polynomials begin with the phrase “If f ∈ R[x] is nonzero ...” Constant
polynomials f = c ·1- have degree zero if c 6= 0, but there is no sensible way to assign a
degree to the zero polynomial.

Sums and products of polynomials are defined in the usual way

(
∑

i≥0

aix
i) + (

∑

i≥0

bix
i) =

∑

i≥0

(ai + bi)x
i

(
∑

i≥0

aix
i) · (

∑

j≥0

bjx
j) =

∑

i,j≥0

(ai ·bj)xi+j

=
∑

k≥0

(
∑

i+j=k

aibj)xk

=
∑

k≥0

(akb0 + ak−1b1 + . . .+ a0bk) · xk

These make R[x] a commutative ring with identity 1- whose zero element is the zero polynomial.
The space of polynomials R[x] becomes an ordered ring if we define the positive elements

as follows
“f > 0” if am > 0 in the leading nonzero term amx

m of f .

In later discussions the order properties of the ring of polynomials will be exploited to great
advantage. �

*2.1.9D Exercise. Verify that the relation “f > 0” defined for polynomials in R[x] satisfies
all the order axioms. Now suppose we define a relation “f >> 0” to mean “f(x) > 0 for all
x ∈ R.” Explain why “>>” does not satisfy the ordered ring axioms.
Note: You may presume that the commutative ring axioms have already been verified. �

2.1.9E Exercise. In any commutative ordered ring with identity one defines the absolute value

|x| of an element to be

|x| =

{

x if x > 0

|x| = −x if x < 0

In every case |x| ≥ 0. We also have |x| = ±x; x = ±|x|; and −|x| ≤ x ≤ |x|. (More on absolute
values in Section 2.2.)
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If f = a01-+ a1x
1 + a2x

2 + . . .+ amx
m is a nonzero polynomial in R[x] with nonzero leading

coefficient am 6= 0, what is the absolute value |f | of this polynomial as an element of the ordered
ring R[x]? For instance what is the absolute value in R[x] of 2 − x+ x2 − 3x4? �

The Induction Axiom. Many algebraic systems other than the usual system of integers
satisfy Axioms I-II, for example the rational numbers Q or real numbers R. To exclude those,
we introduce what is probably the most distinctive (and subtle) property of the integers. This
axiom specifies a connection between the set P

R
= {x ∈ R : x > 0} of positive elements in an

ordered ring (R,+, ·, >) and the “counting numbers” N
R

in R, which are obtained by starting
with the identity element 1 and repeatedly forming “successors”

Start 1
1+1 (which we label “2”)
1+1+1 = 2 + 1 (which we label “3”)

...

etc.

The distinctive feature of the system of integers is that this recursive process yields all the

positive elements. The idea is to make this intuitive statement into our third and last axiom.
Unfortunately, the phrase “... etc.” used above is not a proper definition of the “counting

numbers” in R because the suggested construction cannot be completed in a finite amount of
time. Here’s one way to craft a correct definition of the counting numbers in any system that
satisfies Axioms I and II. The definition is “existential” rather than “constructive.”

2.1.10 Definition. A subset S ⊆ P
R

in the set of positive elements in a commutative ordered

ring R is an inductive set if

(i) The identity element 1 lies in S: 1 ∈ S

(ii) The successor s+ 1 of any element in S is also in S: s ∈ S =⇒ s+ 1 ∈ S.

Inductive subsets exist: the set of positive elements P
R

has these properties. It is also easy to
see that an arbitrary intersection

⋂

α Sα of inductive sets is again inductive, hence there is a
smallest inductive set N

R
in any commutative ordered ring. This is the natural candidate for

the set of “counting numbers” in R.
Clearly N

R
⊆ P

R
but in many commutative ordered rings, such as Q and R, the set N

R
is

much smaller than P
R
, and in these systems the element 1 and its successors fail to “generate”

the full set of positive elements in R. Our final axiom forces the counting numbers to have the
properties we intuitively expect of them. This axiom turns out to be the final step in charac-
terizing the system of integers.

2.1.11 Axiom III: The Induction Axiom. We assume that (R,+, ·, >) is an ordered com-

mutative ring (a system satisfying Axioms I-II) and then require that the set of positive elements

P
R

= {x ∈ R : x > 0} has the following property.

Induction Property: If a subset S ⊆ P
R

has the properties

(a) 1 ∈ S

(b) s ∈ S =⇒ s+1 ∈ S (i.e. “if s lies in S, so does its successor s+1”)

then S is equal to the full set P
R

of positive elements in R. �

In short, this axiom says: N
R

is equal to P
R
. It means that the intrinsic counting numbers N

R

are “pervasive” in the full ring R since R = −N
R
∪ {0} ∪ N

R
.

It can be proved that there exists a unique algebraic system (R,+, ·, >) satisfying Axioms
I-III: given two such systems there is a bijection φ : R → R′ under which positive elements
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and the operations (+), ( · ) in one system match up with those in the other system. There can
be no difference in the algebraic properties of two such isomorphic systems; they are simply
different concrete realizations of the same algebraic structure.

The proof is complicated, and we will not go into the details here. We call the resulting
system the system of integers, and hereafter we denote it by the symbol Z instead of R; we
will also use the traditional notation N for the counting numbers {1, 2, . . .} in Z instead of N

R

or P
R
. Notice that Z = −N ∪ {0} ∪ N (disjoint union), by Axiom II.

Below we list some useful properties of the integers that may seem intuitively obvious, but
which must be proved from Axioms I-III and their previously established consequences.

*2.1.12 Exercise. Prove that the identity element 1 is the smallest number in N. – i.e. that
1 ≤ n for all n ∈ N.
Hint: Consider the set S = {n ∈ N : n ≥ 1} and show it has properties (a),(b) in the Induction
Axiom. �

2.1.13 Exercise. If n ∈ N and n > 1 explain why n− 1 ∈ N.
Hint: In Z we have N = P . Use 2.1.12. �

2.1.14 Exercise. If n ∈ N and n > 1, prove that n ≥ 2 – i.e. there are no natural numbers
between 1 and its successor 2 = 1 + 1. �

*2.1.15 Exercise. If n ∈ N show that there cannot be an x ∈ N such that n < x < n+ 1. �

2.1.16 Exercise. If m,n ∈ N and m > n, prove that m− n ∈ N. �

We list these small results because they have a tendency to come up often. You are urged to
work out proofs for Exercises 2.1.12-16; they aren’t very hard.

Next we come to a really important fact. We relegate the somewhat intricate proof to
Appendix A at the end of this chapter.

2.1.17 Theorem (The Minimum Property). If S ⊆ N is non-empty, then there exists a

unique minimum element in S – an element s0 = min{S} in S such that s0 ≤ s for all s ∈ S.

The minimum element s0 is obviously unique, once we know it exists.
The Minimum Property is sometimes taken as an alternative Axiom III′ in place of Axiom

III.

(3)
Equivalence of Induction and Minimum Properties: If (R,+, ·, >) is

any system satisfying Axioms I-II, then (Axiom III) holds in this system if

and only if (Axiom III′) holds.

Theorem 2.1.17 above is just the implication (Axiom III)⇒(Axiom III′). For completeness a full
proof of this equivalence is given in Appendix A. We have emphasized the Induction Principle
over the Minimum Principle because induction is the foundation of most mathematics as we
know it.

The following rewording of Axiom III shows how this principle gets used in practice.

2.1.18 The Induction Principle in Practice. Suppose an assertion P (n) has been assigned
to each counting number n ∈ N, and each statement is either true or false. Suppose we can
show that

(a) Statement P (1) is true.

(b) If statement P (n) is assumed to be true, we can then prove P (n + 1) true
based on this information. (In symbolic logic shorthand: P (n) ⇒ P (n + 1)
for all n ∈ N.)

Conclusion: the statement P (n) must be true for all n ∈ N.

Discussion: This follows from Axiom III by looking at the set S = {n ∈ N : P (n) is true }.
We have 1 ∈ S by (a), and (b) tells us that S is “closed” under formation of successors, so that
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s ∈ S ⇒ s + 1 ∈ S. Thus S = N. Notice that by appealing to the Induction Axiom we are
able to establish the truth of infinitely many different statements P (1), P (2), . . . with a finite
amount of effort! �

2.1.19 Example. Show that for any n ∈ N

(4) 1 + 2 + · · · + n =
n(n+ 1)

2
for all n ∈ N

Here 1 + 2 + . . .+ n means “the sum of all integers k such that 1 ≤ k ≤ n.”

Discussion: Consider the statements P (n) = (the identity (4) is true at level n). Obviously
P (1) is true because 1 is the only integer k such that 1 ≤ k ≤ 1, and 1 = (2 ·1)/2. Now suppose
we know P (n) is true for some n. Then the next statement P (n+ 1) can be rewritten

(1 + 2 + . . .+ n) + (n+ 1) =
n(n+ 1)

2
+ (n+ 1) (since P (n) is true)

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 2)(n+ 1)

2
=

(n+ 1)[(n+ 1) + 1]

2
,

and this is just what we need to validate P (n+ 1). By induction, P (n) is true for all n. �

2.1.20 Exercise. Prove that

12 + 22 + · · · + n2 =
n(n+ 1)(2n+ 1)

6

is true for all n ∈ N. �

*2.1.21 Exercise. Prove that the sum of the first n odd integers is equal to n2

n2 =

n
∑

k=1

(2k − 1) = 1 + 3 + . . . + (2n− 1)

for all n ∈ N. �

2.1.22 Exercise. Prove that
n

∑

k=1

k3 = (
n

∑

k=1

k)
2

= (1 + 2 + . . .+ n)2 =
n2(n+ 1)2

4

for all n ∈ N.
Hint: Use 2.1.19. The last two equalities follow from 2.1.19 �

2.1.22A Exercise. Use induction to prove

(a) n < 2n for n ≥ 1 in N.

(b) n2 < 2n+1 + 1 for n ≥ 1

(c) n3 ≤ 3n for an ≥ 3 �

2.1.22B Exercise. If a > 0 use induction to prove that

n
∑

k=1

a− 1

ak
= 1 − 1

an

for all n ∈ N. �

2.1.22C Exercise. The recursive formula

xn+1 = 1 +
√
xn − 1

defines a sequence of numbers for every initial value x1 > 2. Prove that
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(a) xn > 2 for all n (so the square roots in the formula make sense).

(b) The sequence is monotone decreasing, with xn+1 < xn for all n. �

The following example shows how an “argument by induction” can go astray if you are not
meticulous in checking that your Induction Hypothesis actually works when you claim it does.
The biggest culprit is careless language, as below.

2.1.23 Example (A Paradox?). We claim that in any finite set of billiard balls, all members
of the set have the same color.

“Proof”: The inductive hypothesis is:

Inductive Hypothesis P (n): For any counting number n ∈ N and any set of billiard
balls with n members, all the balls have the same color

This is certainly true for n = 1: there is just one ball. Now suppose n > 1 and we know that
P (n) is true. We prove that P (n+1) must be true, and hence that P (n) is true for all counting
numbers, as follows.

Consider any set A of n+ 1 balls, and the subsets

B = (first n balls) C = (last n balls)

The inductive hypothesis applies to both B and C, so all balls in B have the same color, and
likewise for the balls in C. Since the two sets have a ball in common, all the balls in their union
A = B ∪C have the same color, proving that P (n+ 1) is true. By the Induction Axiom, P (n)
is true for all counting numbers n so all billiard balls have the same color. �

The conclusion is absurd. Can you spot the error in this “proof”?

2.1.24 Definition (Finite sets). Two sets A,B are said to have the same cardinality, or

size, if there exists a bijection ψ : A→ B; this is indicated by writing A ≈ B. This relationship

means that the points in A can be matched exactly with those in B. Of course there may be

many ways to achieve the match, so ψ is far from unique. It is the existence of some ψ that

makes A ≈ B
In N we define an interval [1, n] = {k ∈ N : 1 ≤ k ≤ n} for each n ∈ N, and we say that a

set A is finite if there exists some n such that A ≈ [1, n]. If A is not finite we say that A is

infinite. The two possibilities are indicated by writing |A| = n or |A| = ∞ respectively. The

empty set is also regarded as a finite set, with cardinality |∅| = 0.

Our definition of |A| = n attempts to capture what we mean when we say that “A is finite
and contains exactly n points.” However, there is a long road from these basic definitions to
proofs that the relations |A| = n and |A| = ∞ have the properties we intuitively expect of
them. Everything must in the end be proved from the axioms governing the integers. We will
not go into those details here, except to say that virtuoso use of the Induction Axiom is needed
to verify such “intuitively obvious” properties as:

1. If |A| = m and |B| = n then A ≈ B ⇔ m = n. This reduces to proving there
cannot be a bijection between [1,m] and [1, n] unless m = n.

Thus each finite set is associated with a uniquely defined counting number n, its cardinality.
This fundamental result is proved by induction on the size of the larger of the numbers m,n.
It may come as a surprise that this requires proof at all; moreover, the actual proof is not so
easy. To illustrate the issues involved in proving this fundamental fact we offer a self-contained
proof as optional reading, in Appendix C. We list further properties of finite and infinite sets
without proof.
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2. If A is finite and B ⊆ A then B is finite and |B| ≤ |A|, with equality if
and only if A = B. Subsets of an infinite set can be finite or infinite (= not
finite).

3. The Arithmetic of Cardinalities. If A and B are disjoint finite sets,
then A ∪ B is finite and |A ∪ B| = |A| + |B|. If the sets are not disjoint,
A ∪B is still finite but all we can say about its cardinality is that |A ∪B| ≤
|A| + |B|. More generally, suppose we have a finite collection of sets, say
{Ak : k ∈ [1, n]} for some n ∈ N, such that each Ak is finite. Then their
union

⋃

k∈[1,n]Ak =
⋃n

k=1Ak is also finite, and by an induction argument

|
n
⋃

k=1

Ak| ≤
n

∑

k=1

|Ak| .

Equality holds if the sets are pairwise disjoint in the sense that Ai ∩Aj = ∅
for all i 6= j.

4. If A is finite and B is infinite there cannot be a bijective map between them.

5. Infinite sets exist. The set N of counting numbers is not finite. We say that
a set A is countably infinite if A ≈ N. The sets Z and Q are countably
infinite.

6. If A is an infinite set and B a proper subset, so B ⊆ A, B 6= A, it is possible
that B ≈ A. Thus an infinite set can be equivalent to a proper subset of
itself. Some examples: Z ≈ N, Z ≈ 2Z = { all even integers } = {2k : k ∈ Z}
and Z ≈ Q = { all rational numbers }.

7. There are infinite sets A,B that do not have the same cardinality – i.e. A
and B are both infinite, but there is no bijection between them.

A famed theorem of Cantor showed that the infinite sets Z and R are not of the same cardinality,
and hence represent different “orders of infinity.” It was also shown that the real line R has the

same cardinality as any Euclidean space Rn; in particular the line R, the plane R2 = R × R,
and Euclidean coordinate space R3 = R × R × R are equivalent, so R ≈ R2 ≈ R3.

8. If A is a countable infinite set and B ⊆ A then B is either finite or countable.
There can be no orders of infinity lurking between “finite” and “countable.”

9. Schroder-Bernstein Theorem. Let A,B be any sets, finite or not, and
suppose that there exist one-to-one maps

(i) f : A→ B so A ≈ B′ for some subset B′ ⊆ B

(ii) g : B → A so B ≈ A′ for some subset A′ ⊆ A

Then there exists a bijection φ : A→ B so that A ≈ B.
Note: In fact a suitable bijection φ can be constructed explicitly, in countably
many recursive steps, by slicing and dicing the original maps f, g and suitably
reassembling the pieces.

The last theorem is nontrivial even when the sets A,B are finite. A brief self-contained proof
is given in Appendix B.

The next (and last) basic property of finite sets is ultimately a consequence of the Minimum
Property 2.1.17. It tells you how to identify the finite subsets of the integers, and states a
property that is often invoked for such sets in place of 2.1.17.

10. A subset S ⊆ Z is finite if and only if S lies in some interval in the integers
[a, b] = {x ∈ Z : a ≤ x ≤ b} with a ≤ b. To put it differently, a finite set is
one that is bounded from above and from below. A nonempty finite set S in
the integers has a largest and a smallest element – i.e. there exist elements
a, b ∈ S such that a ≤ s ≤ b for all s ∈ S.
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As indicated above, we forego the details of proof (some are quite involved) since this is not a
course in set theory. However, we will make free use of the properties (1.)-(10.) as needed.

Infinite sets are the source of many seeming paradoxes, the most basic example being the
Parable of the Infinite Hotel.

The Infinite Hotel. Suppose a hotel has infinitely many rooms, with each count-

ing number n ∈ N assigned to a different room. Tonight the hotel is fully booked,

but to accomodate a VIP latecomer the management puts this dignitary in Room 1

and moves the current residents to new rooms:

Room 1 → Room 2 → Room 3, . . . , Room n→ Room n+ 1, . . .

When the dust settles, everyone has a room. �

2.1.25 Exercise. Verify that the “equal cardinality” relation A ≈ B between sets is an RST
equivalence relation, as defined in Chapter 2. �

*2.1.26 Exercise. If A is a nonempty finite subset of Z prove that A is bounded from above
and from below – i.e. there exist a, b ∈ Z such that a ≤ x ≤ b for all x ∈ A.
Hint: Since A ≈ [1, n] (if it is not empty) we can list its elements as a1, . . . , ai, . . . , an. Try
some combinations of |a1|, . . . , |an| (or −|a1|, . . . ,−|an|). �

*2.1.27 Exercise. If A is a nonempty finite subset of Z prove that A has a largest and a
smallest element.
Hints: Start with 2.1.26. If b ∈ Z and you replace A by a translate b + A = {b + a : a ∈ A}
what happens to min(A) and max(A)? What happens when you replace A by −A = {−a : a ∈
A} = (−1) ·A? You will of course want to invoke the Minimum Principle. �

*2.1.28 Exercise. Show that the following infinite sets have the same cardinality by finding
explicit bijections between them.

(a) Z and the set of even integers 2Z = {2n : n ∈ Z}.
(b) The sets 2Z and 2Z + 1 of even and odd integers.

(c) The sets N and A = {n ∈ Z : n ≤ 50}
(d) The sets N and Z+ = {0} ∪ N = {n ∈ Z : n ≥ 0}
(e) The real line R and the unbounded interval (0,+∞) = {x ∈ R : x > 0}.
(f) The real line R and the bounded interval (0, 1) = {x ∈ R : 0 < x < 1}. �

*2.1.29 Exercise. Using the Schroeder-Bernstein Theorem, prove that the following sets must
have the same cardinality by producing explicit one-to-one (but not necessarily surjective) maps
f : A→ B and g : B → A.

(a) The real line R and the unbounded interval [0,+∞) = {x ∈ R : x ≥ 0}.
(b) The real line R and the bounded interval [−1, 1] = {x ∈ R : −1 ≤ x ≤ 1}.
(c) The intervals [0, 1], [0, 1), and (0, 1) in the real line.

(d) The unit disc in the plane A = {(x, y) ∈ R2 : x2 + y2 < 1} and the unit
square B = {(x, y) ∈ R2 : −1 ≤ x, y ≤ 1}.

(e) The unit disc in the plane A = {(x, y) ∈ R2 : x2 + y2 < 1} and the entire
plane B = R2. �

2.1.30 Exercise. Explain how the equivalence [0, 1] ≈ [0, 1) follows from Schroder-Bernstein.
Then try constructing an explicit bijection φ : [0, 1] → [0, 1). What did you do with the extra
endpoint “1” in [0, 1]?
Hint: The parable of the Infinite Hotel might be relevant here. �
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2.2 Arithmetic in the Integers Z.

This is still a quick survey, but now we will give proofs more often. Once we hit Section 2.3
all results will be proved from the axioms or previously established consequences. We begin
with the properties of absolute value |a|. It should be noted that the discussion of 2.2.1 - 2.2.4
applies verbatim to the absolute value in an arbitrary commutative ordered ring.

2.2.1 Definition. The absolute value of x ∈ Z is

|x| =







x if x > 0
0 if x = 0

−x if x < 0

Taking the absolute value of x can be viewed as an operation that maps Z into Z. Its range is

the set Z+ = {n ∈ Z : n ≥ 0} = N ∪ {0} of nonnegative integers.

The following properties of absolute value are immediate consequences of this definition.

1. |x| ≥ 0 and |x| = 0 ⇔ x = 0.

2. |x| = +x or −x and x = +|x| or −|x| for any x ∈ R.

3. | − x| = |x| for all x ∈ R

4. |x| ≥ x and |x| ≥ −x for all x ∈ R.

Proof: By Trichotomy either x > 0 or x = 0 or x < 0. The result is trivial if
x = 0; if x > 0 we have |x| = x > 0 > −x; if x < 0 we have |x| = −x > 0 > x.
In every case, |x| ≥ both x and −x.

5. | − 1| = 1 �

The next observation is important because it allows us to interpret inequalities involving abso-
lute values in terms of the geometry of the number line, and to apply visual intuition.

2.2.1A Lemma. If r > 0 then |x| < r ⇔ −r < x < r (so x lies between the points −r and r
in the number line).

Proof: From the definition of |x| we have |x| = +x or −x, hence x = +|x| or −|x| and in
either case we have −|x| ≤ x ≤ |x|. If |x| < r it follows that −r < −|x| (by 2.1.6(#7)). Thus

−r < −|x| ≤ x ≤ |x| < r

and −r < x < r as claimed. �

As an immediate consequence we obtain the “geometric” interpretation of the solution set of
the more general inequality |x− p| < r, which holds if and only if p− r < x < p+ r.

Other basic properties of absolute value are posted in the following exercise.

*2.2.2 Exercise. Show that absolute value |x| in a commutative ordered ring has the following
properties.

(a) |xy| = |x| · |y|
(b) |x2| = |x|2 = x2

(c) Triangle Inequality: |x± y| ≤ |x| + |y|, for all x, y ∈ Z.

Hint: In (a) and (b) you might do casework based on the signs of x or y; it might help to write
x = (−1)|X | when x is negative. In (c) it suffices to prove |x+ y| ≤ |x| + |y|; since | − y| = |y|
the other version follows upon replacing y 7→ −y. For the “+” version, square both sides, do
some algebra, and use Exercise 2.1.9. �

2.2.3 Lemma. If x 6= 0 in Z then |x| ≥ 1. Furthermore, |x| = 1 ⇔ x = +1 or x = −1.

Proof: Z is a disjoint union −N ∪ {0} ∪ N ; by our remarks in 2.1.5, the absolute value |x| is
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in N if x 6= 0, and hence by 2.1.12 we must have |x| ≥ 1. The second statement is obvious once
you observe that |x| is either +x or −x. �

The units, or invertible elements, in Z are those u ∈ Z that have a multiplicative inverse:
there exists some element v ∈ Z such that uv = 1. As an application of 2.2.3 we determine the
units in Z.

2.2.4 Lemma. The only multiplicative units in Z are +1 and −1.

Proof: If uv = 1, then |u| · |v| = 1 and neither absolute value can be zero (by 2.1.2(#5) and
the fact that 1 6= 0). By 2.1.12, we have |u| ≥ 1 and |v| ≥ 1.

We now argue by contradiction. If either absolute value were greater than 1, say |u| > 1,
we would have 1 = |uv| = |u| · |v| > 1 · |v| = |v| ≥ 1. The net result would be that 1 > 1,
which is impossible. Conclusion: neither absolute value can exceed 1, and hence |u| = |v| = 1.
Applying Lemma 2.2.3 we see that u = ±1. �

Divisibility in the system of integers. We begin with the official definition of “divisibility,”
keeping an eye on the exceptional role of the zero element.

2.2.5 Definition. If a and b are two integers we say that b divides a, often written as b|a, if
there exists an m ∈ Z such that a = mb. Another way to put it: b|a⇔ a is a multiple of b. �

Here are some easy consequences of this definition.

2.2.6 Exercise. Verify the following facts from the definition.

1. a|0 for any a ∈ Z.

2. 0 does not divide any non-zero element in Z. (However, we do have 0|0
according to our definition.)

3. 1|a and −1|a for all a ∈ Z. (Thus ±1 are “trivial divisors” of every a ∈ Z)

4. Divisibility is transitive: If a, b, c 6= 0 then a|b and b|c =⇒ a|c �

2.2.7 Lemma. If a, b 6= 0 then a|b and b|a =⇒ b = a or b = −a.
Proof: If a|b and b|a, there exist c1, c2 ∈ Z such that a = c1b = c1(c2a) = (c1c2)a. Since a is
non-zero, by the cancellation law 2.1.7(b) we have c1c2 = 1, and hence c1 and c2 are both units
in Z. By 2.2.4, c2 = ±1 and therefore b = c2a = ±a, as claimed. �

The next result and the procedure set forth in its proof are fundamental in all discussions of
algebra and number theory.

2.2.8 Theorem (Euclidean Division Algorithm). Let a, b ∈ Z with b 6= 0. Then there

exist m, r such that

(5) a = mb+ r with m ∈ Z and 0 ≤ |r| < |b|.

We can always arrange that r ≥ 0, and then the pair (m, r) is unique.

Proof: If a = 0 we can take m = r = 0, so assume a is non-zero. To get r ≥ 0 when r 6= 0,
suppose we have a = mb + r with r < 0. Then |r| < |b| ⇒ −|b| < r < 0; adding |b| to both
sides gives 0 < |b| + r < |b|. Now rewrite (5) as

a = mb+ r = (mb− |b|) + (|b| + r) = m′b+ r′ with 0 ≤ r′ < |b| ,

noting that m′b = mb−|b| = mb±b = (m±1)b is just another multiple of b. Now the remainder
is nonnegative as desired.

As for uniqueness when r ≥ 0, suppose we have two decompositions a = m1b+r1 = m2b+r2
with 0 ≤ ri < |b|. We may label things so r2 ≥ r1, and then 0 ≤ r2 − r1 ≤ r2 < |b|. Taking
the difference of the two identities we get r2 − r1 = (m1 −m2)b; taking absolute values we get
0 ≤ |m1 −m2| · |b| = r2 − r1 < |b|. The only way this can happen is to have m1 −m2 = 0 and
m1 = m2, and then it follows immediately that r2 = r1.
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In practice, division with remainder is most often performed for a, b > 0, and can always be
reduced to this case. Assuming a ≥ 0 and b > 0 we execute the following algorithmic steps to
get (5) with r ≥ 0.

Step 1. If 0 ≤ a < b, exit and report: a = 0 · b + a, in which m = 0, r = a.
Otherwise we have a ≥ b and go to the next step.

Step 2. Since a ≥ b we now test whether b ≤ a < 2b. If so, exit and report
a = 1 · b + (a − b) in which m = 1 and 0 ≤ r = a− b < 2b − b = b. Otherwise, we
have a ≥ 2b and we go to the next step.

Step 3. Since a ≥ 2b we now test whether a < 3b. If so, exit and report a =
2 · b+ (a− 2b) in which m = 2, 0 ≤ r = a− 2b < b. Otherwise, go to the next step.

...

We have indicated an inductive process which could easily be converted into computer code.
The only unresolved issue is whether this process terminates in some finite number of steps.

To see why it does, consider what would happen if it did not. Then for every n ∈ N our
number a would fail the test a ≤ nb. That means a > nb for all n ∈ N, and since b ≥ 1 we would
be forced to conclude that a > nb ≥ n for all counting numbers n ∈ N. That is impossible,
because a+ 1 is in N and we would obtain the contradiction a > a+ 1 > a+ 0 = a. �

This proof outlined an algorithm for finding m and r, at least when a and b are positive: simply
keep subtracting copies of b from a until 0 ≤ a−mb < b. Further analysis yields upper bounds
on the number of steps required to execute the algorithm. (It turns out that this is quite a fast
algorithm, and is essentially what goes on inside your calculator.)

If you have a calculator there is a fast way do Euclidean Division:

1. Compute the decimal version of

a
b = bn . . . b0 . a1a2 . . . = k +

a′

b
= (integer part) + (fractional part) = I + F

2. Store I =(integer part) and then subtract it from a/b to get F =(fractional

part), which is < 1.

3. Letting m = I we have

a =
a

b
b = b·I + b·F = mb+ bF = mb+ r

so r = |b| · F is an integer such that 0 ≤ r < |b| and we have a = mb+ r.

Your calculated answer for r may exhibit trailing “nines” due to calculator round-off error;
round up to get r as an integer.

2.2.9 Exercise. Use this calculator routine to write a = mb+ r with 0 ≤ r < |b| when

(a) a = 11, 473 and b = 598 (b) a = 11, 473 and b = −598

*2.2.10 Exercise. Taking a = 5, b = 7 show that m and r in 7 = 5m + r are not uniquely
determined if we only require 0 ≤ |r| < |b|. �

2.2.11 Definition (Greatest Common Divisor). A greatest common divisor of nonzero

elements a, b ∈ Z, denoted by (a, b) or gcd(a, b), is an element c ∈ Z such that

1. c|a and c|b
2. c > 0

3. If c′ is any other element of Z satisfying (1.) and (2.) then c′ divides c.
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A greatest common divisor is denoted by gcd(a, b), or sometimes just (a, b).

In this context the word “greatest” refers to divisibility, not order x < y.
The following lemma demonstrates existence of gcd(a, b) for nonzero integers a, b; the proof

also provides a handy geometric interpretation of the gcd.

2.2.12 Lemma. For any pair of nonzero integers there exists a unique greatest common divisor

gcd(a, b), which has the form gcd(a, b) = ra+ sb for suitably chosen r, s ∈ Z.

Proof: Uniqueness. Suppose two elements c and c′ have the properties listed in 2.2.11. By
Property 3, we would have c|c′ and c′|c. By Lemma 2.2.7 we have c′ = ±c. Since a gcd must be
positive we get c = c′ > 0.

Existence: In Z we construct the “additive lattice” Λ = Λ(a, b) obtained by taking all “integer
linear combinations” of the elements a and b.

(6) Λ = Za+ Zb = {ma+ nb : m,n ∈ Z}

Obviously Λ is nontrivial because it contains a = 1a+ 0b and b = 0a+ 1b. In fact there exist
positive elements in Λ, so Λ ∩ N 6= ∅, because both ±a lie in Λ. By the Minimum Principle
(Theorem 2.1.11) there exists a smallest element in Λ∩N, which we denote by c. By definition
of Λ there are integers m0, n0 ∈ Z such that c = m0a+ n0b.

We claim that c is a gcd of a and b. Statement (2.) in the definition of gcd is obviously
true. We verify (1.) by applying the Euclidean Division Algorithm to prove a more general
statement, namely

Every element ma+ nb in Λ is divisible by c.

In fact, by the Division Algorithm 2.2.8 there exist k, r such that

ma+ nb = kc+ r, with 0 ≤ r < c

r = ma+ nb− kc

= ma+ nb− k(m0a+ n0b) = (m− km0)a+ (n− kn0)b

This shows that r ∈ Λ. But 0 ≤ r < c, so by minimality of c we must have r = 0 and ma+ nb
is a multiple of c.

Finally, suppose c′ ∈ Z divides both a and b. Then then c′|x for any x ∈ Λ, and in particular
c′|c. Thus c is a gcd of a and b. The proof is complete. �

2.2.13 Corollary. If a, b ∈ Z with a 6= 0, then there exist r, s ∈ Z such that gcd(a, b) = ra+sb.
The greatest common divisor c is the smallest positive element in the lattice Λ defined in (6)
above. Furthermore every element of Λ is a multiple of c, so that Λ = c·Z.

Proof: Since c ∈ Λ it is obvious that c ·Z ⊆ Λ. Conversely, since c|a and c|b any element
ra+ sb ∈ Λ is also a multiple of c, and Λ ⊆ c · Z. �

*2.2.14 Exercise. Let a, b be nonzero integers. Prove that their greatest common divisor has
the following properties

(a) gcd(a, b) = gcd(b, a)

(b) gcd(a+ kb, b) = gcd(a, b) for any k ∈ Z.

(c) If a, b 6= 0 and a divides b, explain why gcd(a, b) = a.

Note: Property (b) will be crucial in what follows.
Hint: Use the fact that c = gcd(a, b) is the smallest positive element in Λ = Za+ Zb. Compare
the sets Λ = Za+ Zb and Λ′ = Z(a+ kb) + Zb, giving separate arguments to show that Λ′ ⊆ Λ
and Λ ⊆ Λ′ to conclude that these sets are the same. Therefore gcd(a, b) = min{Λ∩N} is equal
to gcd(a+ kb, b) = min{Λ′ ∩ N}. �
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The properties (b) and (c) in the last exercise are the basis of a very fast algorithm for deter-
mining the gcd of two integers a, b > 0.

The GCD Algorithm (sketch). We may label things so b ≥ a. If a = b =
gcd(a, b) there’s nothing to do, so suppose 0 < a < b. We begin the recursive
process that yields the gcd by labeling b0 = b > a0 = a; we produce the next pair
of numbers b1 > a1 in the following way. As in the Euclidean division algorithm,
subtract multiples of the smaller number a from the larger number b until we get a
remainder 0 ≤ r = b− ka < a. If r = 0 then b divides a so we have gcd(a, b) = a by
(c) above, and we’re done. Exit the algorithm.

Otherwise we get gcd(a, b) = gcd(a, b − ka) = gcd(a, r) = gcd(r, a) with 0 <
r < a, and we are back in the situation we started with, except that the new
integers are b1 = a0 = a and a1 = r with b1 > a1. By (b) of 2.2.14 we have
gcd(a, b) = gcd(a0, b0) = gcd(a1, b1).

Both new numbers a1 and b1 are less than the largest number in the original pair
b0, a0, while gcd(a0, b0) = gcd(a1, b1), so we have decreased the size of the larger
number without changing the gcd. Such reduction can only continue for a finite
number of steps. It terminates when we get a remainder of zero, in which event
am|bm and

gcd(a, b) = gcd(a0, b0) = gcd(a1, b1) = . . . gcd(am, bm) = am (when am|bm).

2.2.15 Example. Use the GCD Algorithm to compute the greatest common divisor of 48 and
347 using the GCD algorithm.

Discussion: Labeling a0 = 48 < b0 = 347 we have

gcd(48, 347) = gcd(48, 11) = gcd(11, 48) because 11 = 347 − 7(48)
= gcd(11, 4) = gcd(4, 11) because 4 = 48 − 4(11)
= gcd(4, 3) = gcd(3, 4) because 3 = 11 − 2(4)
= gcd(3, 1) = gcd(1, 3) because 1 = 4 − 1(3)
= 1 save these ↑ calculations

Therefore gcd(48, 347) = 1. �

It is possible to extract from the GCD algorithm (essentially by working it backward) a fast
algorithm that produces integers r, s such that

ra+ sb = gcd(a, b)

The r, s need not be positive even if a, b > 0. For some purposes it is just as important to know
the multipliers r, s as it is to determine the gcd. In fact, suppose that integers a and n > 1 are
relatively prime in the sense that gcd(a, n) = 1, so that ra+ sn = 1 for suitably chosen r, s ∈ Z.
Then in the commutative ring Zn (defined in Chapter 1) we have found a multiplicative inverse
for the (mod n) congruence class [a] = a+ nZ. In fact, we have sn ≡ 0 (mod n) so that

1 = ra+ sn ≡ ra+ 0 = ra (mod n)

Thus [r] · [a] = [1] and [a]−1 = [r] (also [r]−1 = [a]). Finding multiplicative inverses in Zn by
trial and error, if they actually exist, is quite tedious; the systematic approach outlined above
is much more efficient. The necessary modifications of the GCD Algorithm are given below.

Extended GCD Algorithm. The idea that allows us to find suitable r, s is that
at the last step in the GCD Algorithm it is easy to write c = gcd(am, bm) in the
form rmam + smbm = c by trial and error because we are dealing with very small
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numbers. For instance in the last example 1 = gcd(3, 1) can be seen by inspection
to equal

1 = 1 3 + (−2) 1 with r = 1, s = −2.

Next we use the result 1 = 4 − 1(3) from the previous step in GCD to rewrite 1 ,

thereby replacing the smaller of the two numbers ** . This yields the identity

1 3 + (−2)[ 4 − 1(3) ] = 3 3 + (−2) 4 = 1

Continuing, we again replace the smaller number 3 in this identity, this time using
the next-to-last identity 3 = 11 − 2(4) in the GCD process. We get

3[ 11 − 2(4) ] + (−2) 4 = 3 11 − 8 4 = 1

In the next step we replace the smaller number 4 using 4 = 48 − 4(11) to get

3 11 − 8[ 48 − 4(11) ] = 35 11 − 8 48 = 1

Finally, we replace 11 = 347 − 7(48) to get

35 [ 347 − 7(48) ]− 8 48 = 35 347 − 253 48 = 1

This is the answer to our prayers: the gcd = 1 has been expressed in the form
347r + 48s = 1, with very little additional effort once the forward GCD Algorithm
has been executed to find gcd(347, 48). (You must however retain the computational
details recorded in the right-hand column of Example 2.2.15.) �

*2.2.16 Exercise. Use the algorithm outlined above to find gcd(a, b) for the following pairs
of integers

(a) a = 5, b = 85 (b) a = 296, b = 1317 (c) a = 955, b = 11422

By trial and error (using a calculator) see if you can find integers r, s such that ra+sb = gcd(a, b)
in each case.
Note: r, s need not be positive. �

*2.2.17 Exercise. Use the GCD algorithm to verify that gcd(28, 15) = 1. Then find some
pair of integers r0, s0 ∈ Z such that 15r0 + 28s0 = 1. Finally, determine all pairs (r, s) such
that 15r + 28s = 1.
Hint: You could use trial and error or the Extended GCD Algorithm to find r0, s0, since we are
dealing with small values of a, b. �

*2.2.18 Exercise. Use the Extended GCD Algorithm to find r, s such that ra+ sb = gcd(a, b)
for each of the pairs a, b listed in Exercise 2.2.16. �

2.2.19 Exercise. Generalize the definition of gcd to define gcd(a1, . . . , ar) where the ai are
nonzero. Make the obvious changes in the definition of gcd(a, b) and then prove

(a) Prove c = gcd(a1, . . . , ar) exists by considering the set of integer linear combi-
nations

Λ = Za1 + . . .+ Zar =

{

r
∑

i=1

kiai : ki ∈ Z

}

Show that Λ ∩ N 6= ∅ and verify that the smallest element c ∈ Λ ∩ N (which
exists by the Minimum Principle) has the properties required of gcd(a1, . . . , ar).

(b) Show that Λ = Z · c = all integer multiples of gcd(a1, . . . , ar)

17



We say that a1, . . . , ar are jointly relatively prime if gcd(a1, . . . , ar) = 1. �

Although we have not yet officially defined the meaning of “prime,” we will soon see that the
ai are jointly relatively prime ⇔ no prime p > 1 is a common divisor of all the integers ai.
Note: The proof is a simple variant of the previous discussion in these Notes. �

*2.2.20 Exercise. Integers a1, . . . , an > 0 are said to be pairwise relatively prime if
gcd(ai, aj) = 1 for all i 6= j. Intuitively, this means no pair ai, aj has a prime divisor in
common.

(a) Which is the stronger condition: pairwise relatively prime or jointly relatively

prime? Explain.

(b) Using your prior knowledge about primes in the integers give an example of three
integers a1, a2, a3 that are jointly relatively prime but not pairwise relatively
prime. �

*2.2.21 Exercise. We will soon show that a (mod n) congruence class [k] ∈ Zn has a mul-
tiplicative inverse ⇔ gcd(k, n) = 1. For each of the following pairs, check that gcd = 1, find
coefficients r, s ∈ Z such that rk+ sn = 1 and determine the multiplicative inverse [k]−1 in Zn.

(a) k = 6, n = 45 (b) k = 48, n = 1127 (c) k = 296, n = 1317 �

*2.2.22 Exercise. Find the gcd of 48 and 256. Show that [48] cannot have a multiplicative
inverse in Z256 by showing that it is a zero divisor: there exists an ℓ such that [48] · [ℓ] = [0].
Hint: Write gcd = 48r + 256s and use this to show [48] is a zero divisor. �

2.3 Primes and Prime Factorization in Z.

A unit in Z is an element that has a multiplicative inverse: there exists some v ∈ Z such that
uv = 1. Thus the units are the divisors of the identity element 1. In 2.2.4 we showed that 1
and −1 are the only units in Z. Later on we will examine more general structures (R,+, · ),
and employ a similar definition of the units in R. Then the discussion of units becomes much
more interesting.

2.3.1 Definition. A prime is an element p in Z such that (i) p is not a unit, and (ii) p does

not have a proper factorization p = ab (both factors non-units).

By this definition −1 and 1 are not primes. It is also clear that p is a prime ⇔ −p is a prime,
so we will concern ourselves only with positive primes p > 1.

2.3.2 Exercise. Explain why an integer n 6= 0 is prime ⇔ −n is a prime. �

2.3.3 Definition. If a, b are nonzero elements in Z we say they are relatively prime if

gcd(a, b) = 1. That means: there exist r, s ∈ Z such that ra+ sb = 1.

Equivalently, a, b have no common divisor c > 1. Verifying that the usual list 1, 2, 3, 5, 7, 11, . . .
consists of primes it not so straightforward if you try to do it directly from the axioms.

*2.3.4 Exercise. If n > 1 has a nontrivial factorization n = ab (a and b not equal to ±1) then
|a|, |b| > 1 and by 2.1.14 we must have |a| ≥ 2 and |b| ≥ 2. Use this observation to prove that

(a) 2 = 1 + 1 is a prime (d) 5 = 4 + 1 is a prime

(b) 3 = 2 + 1 = 1 + 1 + 1 is a prime (e) 7 is a prime

(c) 4 = 3 + 1 = 1 + 1 + 1 + 1 is not a prime (f) 11 is a prime

Hints: Use basic facts 2.1.6 about inequalities and basic facts 2.2.2 about absolute values. To
deal with (c) you will also need the fact that 2 ·2 = 4. How do you prove that from the axioms?
(What is the definition of “4”?) In (d), what are the proper divisors of 5?
Note: We’re not quite ready to tackle more difficult questions – e.g. are 17 or 19 prime? �

*2.3.5 Exercise. For a, b 6= 0 in Z, verify that
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If a′ = u1a and b′ = u2b with u1, u2 units in Z, then gcd(a, b) = gcd(a′, b′).

Thus gcd(a, b) is unaffected if the entries a and b are multiplied by arbitrary units. �

*2.3.6 Exercise. Let p > 1 be a prime. Show that its only divisors are ±p and ±1. �

We now take up the question of prime factorization. You have all been told that every
integer n > 1 has a unique factorization into primes p > 1. The big question is: How do we
deduce that piece of folklore from the axioms? The proofs go back to Euclid. The first step is
to prove that there exists at least one such factorization

2.3.7 Theorem (Prime Factorization I). Every integer n > 1 can can be written as n =
p1p2 . . . pr where each factor is a prime pi > 1 (repeats allowed).

Some preliminary comments are in order. We will argue by induction starting with n = 2 rather
than n = 1. The initial case is easy: n = 2 is already a prime (see 2.3.4). But the induction step
involves a slight twist. You might expect to procede using Induction to verify the statements

P (n) = (The integer n has a factorization into positive primes)

for n ≥ 2, but it turns out to be more efficient to work with the stronger Induction Hypothesis

Q(n) = (Every integer k with 2 ≤ k ≤ n has a factorization into positive primes)

Obviously Q(n) ⇒ P (n) for all n, so it is certainly alright to make this switch. The question is,
why deal with the more complicated statements Q(n) when our ultimate interest is in P (n)?
The answer: Mathematics is an art rooted in intuition, experience, and sometimes plain animal
cunning. It is easy to check a proof to see if it is valid; it can be hard to create one from scratch,
without any idea what your first move should be. The switch from P (n) to Q(n) is an example
of the art – an unexpected move that actually helps you get to your goal. Watch how it works
below.

Proof (2.3.7): As for the statements Q(n), obviously Q(2) is true. Next suppose Q(n0) is
true for n0 ≥ 2; we want to show that Q(n0 + 1) is true. Let k be any integer 2 ≤ k ≤ n0 + 1.
If k ≤ n0 it has a prime factorization because Q(n0) holds. If k = n0 + 1 itself is a prime,
Q(n0 + 1) is automatically true. [Why? Because in this situation Q(k) is assumed true for all
k ≤ n0, and it is also true for k = n0 + 1. By 2.1.14 no integer can lie strictly between n0 and
n0 + 1, so the statement is true for all k ≤ n0 + 1, verifying Q(n0 + 1).]

In the remaining case k = n0 +1 is not prime and has a nontrivial factorization n0 +1 = ab.
Since ab = |a| · |b| we can assume a, b > 0, and then a, b > 1 (hence a, b ≥ 2) since neither factor
is a unit.

Now n0 + 1 = ab ≥ 2b = b + b ≥ b; likewise n0 ≥ a, so the Induction Hypothesis Q(n0)
applies to both factors, and we may write

a = p1 . . . pr b = q1 . . . qs ,

where pi, qj > 1 are (not necessarily distinct) primes in N. Hence n0 + 1 is also a product
of positive primes: n0 + 1 = p1 . . . prq1 . . . qs, and Q(n0 + 1) is verified. That completes the
inductive step of our proof. By the Induction Axiom, the statements Q(n), and P (n), must be
true for all integers n ≥ 2. �

Question: To see if you really understand this argument, can you explain why the discussion
gets into trouble if you try to make it work using P (n) instead of Q(n)?

2.3.9 Corollary (Euclid). There exist infinitely many prime numbers p > 1 in N.

Proof: The proof is a classic example of “Argument by Contradiction,” which works as follows.
Any proposition P is either true or false. Suppose we assume P is not true (i.e. that ¬P is
true), and by valid reasoning from this premise arrive at an absurdity such as “1 6= 1” or a
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conclusion such as “0 = 1” that is in conflict with one of the Axioms governing Z. Then the
only viable conclusion is that P must be true.

So, suppose our claim is wrong and there are only finitely many primes. Then the set
of primes in N is bijectively equivalent to an interval [1, n] and the primes can be listed as
p1, p2, · · · , pn for some n ∈ N. Indeed, we may label our primes in increasing order so that
pi < pi+1, and then our list will read: p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . (recall Exercise 2.3.3).
Now consider the integers

a = p1p2 · · · pn (the product of all primes)

q = 1 + a = 1 + p1p2 · · · pn (the successor of a)

Finiteness of the set of primes is used here; the product defining a only makes sense if it has
finitely many terms.

By the Factorization Theorem 2.3.7, there exist non-negative integers si ≥ 0 such that

q =

n
∏

i=1

psi

i (pi distinct primes ≥ 1)

Since q > 1 there must be at least one index i such that si ≥ 1. In particular, pi|q. Now observe
that

pi divides a = p1 · · · pn (from definition of a)

pi divides q = 1 + a (by definition of the index i)

Hence pi divides 1 = (1 + a) − a and there is some b ∈ Z such that 1 = b · pi. That forces
both b and pi to be units in Z, so that pi = ±1 (by 2.2.4), which is impossible since pi > 1.
Conclusion: our original statement is true – there are infinitely many primes. �

Uniqueness of the prime factorization. We now show that the factorization described in
2.3.7 is unique. To prove this we need additional simple facts about gcd(a, b) when a, b 6= 0.

2.3.10 Lemma. If p > 1 is a prime and n is a nonzero integer, then either p|n or gcd(p, n) = 1.

Proof: Suppose c = gcd(p, n) 6= 1. Then c > 1 and c divides p, which means there exists
some b such that p = bc. By the definition of the primes, at least one of the factors b and c
must be a unit in Z, hence equal to ±1. It cannot be c because c > 1. Thus b = ±1 and
p = |p| = |bc| = |c| = c. Then p|n because c|n. �

2.3.11 Lemma. Let a, b, c be non-zero integers. If a|bc and gcd(a, b) = 1 then a|c.
Proof: Since gcd(a, b) = 1 there exists integers r and s such that 1 = ra + sb. Therefore
c = rac+ sbc, and since a|bc we get a|sbc. It follows that a divides c = rac+ sbc. �

The following corollary is the key fact needed to prove uniqueness.

2.3.12 Corollary. If a prime p > 1 divides a product b1 · · · bk of nonzero integers, then there

exists an index i such that p|bi.
Proof: We argue by induction on the number k of factors in the product. If k = 1, we can
simply pick i = k = 1. Next suppose our claim is true for an integer k ≥ 1; we must prove it
true for k + 1. In this induction step we are assuming that p|(b1 · · · bk)bk+1. By Lemma 2.3.10,
either p|bk+1, in which case our claim is proved, or gcd(p, bk+1) = 1. In the latter case we apply
Lemma 2.3.11 to get p|(b1 · · · bk). By our induction hypothesis, there is some factor bi, i ≤ k,
such that p|bi. Thus our claim is true in this case too. The proof is complete. �

2.3.13 Theorem (Unique Factorization II). Any integer n > 1 has a unique factorization
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as a product of nontrivial positive primes p > 1. That means,

(7) n =

m
∏

i=1

pri

i where

{

p1, p2, . . . , pm > 1 are distinct primes

ri > 0 for all 1 ≤ i ≤ m

The primes pi appearing in (7) are unique as are their “multiplicities,” the exponents ri.

Proof: Suppose we have two factorizations

n =
r

∏

i=1

pmi

i =
s

∏

j=1

q
nj

j pi, qj > 1 primes, mi, nj ≥ 1

First note that the sets of distinct primes {pi}, {qj} appearing in the factorization of n must
coincide. In fact if we had, say, pi /∈ {qj} for some index i, then pi|n because pi divides the
left-hand product, but then pi would divide the right-hand product so pi|qj for some j, by
2.3.12. But by 2.3.6 the only divisors of the prime qj are ±qj and ±1, so pi would equal qj for
some j. This contradiction shows that r = s and {p1, . . . , pr} = {q1, . . . , qs}.

Once we know that the sets of primes are the same (and r = s) we can relabel the qj to
write the products as

n =

r
∏

i=1

pmi

i =

r
∏

i=1

pni

i pi > 1 distinct primes, mi, ni ≥ 1

These factorizations can differ only in their multiplicities. If mi = ni for all i we’re done,
otherwise there is an index 1 ≤ k ≤ r such that mi = ni for i < k and mk 6= nk. (We may

assume mk > nk by relabeling.) Both products now have a common factor
∏k−1

i=1 p
mi

i , which
by 2.1.7 we may cancel to get

r
∏

i=k

pmi

i =

r
∏

i=k

pni

i with mk > nk ≥ 1

There is still a common factor pnk

k on both sides. Cancelling this we get

pmk−nk

k ·
r

∏

i=k+1

pmi

i =
r

∏

i=k+1

pni

i with mk > nk ≥ 1

Once again we are in conflict with 2.3.12: pk appears in the left-hand product but not in the
product on the right. We arrived at this contradiction by assuming that the multiplicities did
not match, so we have proved the theorem. �

∗2.3.13A Definition. If a > 1 the set sp(a) = {p1, . . . , pr} of distinct primes appearing in the

unique factorization of a is called the spectrum of a. Then

a =

r
∏

i=1

pmi

i =
∏

p∈sp(a)

pm(p) with mi ≥ 1

The exponents mi are the multiplicities of the prime divisors of a.

Using 2.3.13 and the preceding lemmas we can compute gcd(a, b), or decide when gcd(a, b) =
1, if we know the prime factorizations of a and b. The necessary results are developed in the
next exercises.

∗2.3.14 Exercise. Let a > 1, b > 1 be integers and let

(8) a =

m
∏

i=1

pri

i b =

k
∏

j=1

q
sj

j
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be their unique factorizations into nontrivial positive primes. Prove that gcd(a, b) = 1 ⇔
these factorizations have no primes in common, so that sp(a) = {p1, . . . , pm} is disjoint from
sp(b) = {q1, . . . , qk} – i.e. if no single prime p > 1 divides both a and b. �

Hint: As stated, our claim has the form P ⇔ Q. It might be easier to prove the equivalent
statement ¬P ⇔ ¬Q �

∗2.3.14A Exercise. If a, b > 1 and a divides b, prove that sp(a) ⊆ sp(b). �

Thus, if a|b and we want to compare their prime factorizations we may simplify notation by
labeling the prime divisors sp(b) = {p1, . . . , ps}. Then the prime factorizations can be written
as

a =

r
∏

i=1

pmi

i and

s
∏

i=1

pni

i (mi, ni ≥ 1)

where sp(a) = {p1, . . . , pr} and r ≤ s. �

∗2.3.14B Exercise. If a, b > 1 prove that a divides b if and only if mi ≤ ni for 1 ≤ i ≤ r.
(Exponents ni with r + 1 ≤ i ≤ s, if there are any, are unrestricted. �

∗2.3.15 Exercise. Let p > 1 be a prime and let a 6= 0. Prove that p|a ⇔ p2|a2. In particular
(taking p = 2), a nonzero integer a is even (or odd) ⇔ a2 is even (or odd). �

∗2.3.16 Example. In R the number
√

2 is irrational

Discussion: Suppose we could represent
√

2 = a/b where a, b are integers such that b 6= 0.
That is the same as saying 2 = a2/b2 or 2b2 = a2. But by the “uniqueness” part of Prime
Factorization every prime appearing in a must appear an even number of times in a2 because
a = p1 · . . . · pm ⇒ a2 = p2

1 · . . . · p2
m; likewise for b2. Now ask yourself, how many times does

“2” appear on either side of 2b2 = a2? It shows up an even number of times on the right but
an odd number of times on the left. This conflicts with uniqueness of prime factorizations, so
our hypothesis that

√
2 is rational leads to a contradiction. We conclude that

√
2 cannot be

represented by any rational number. �

2.3.17 Exercise. Adapt the discussion of 2.3.16 to prove that
√

3 and
√

6 are irrational. �

∗2.3.18 Exercise. If n ≥ 0 prove that
√
n is irrational unless n is a “perfect square” n = a2

for some a ∈ Z. �

*2.3.19 Exercise. Let a, b > 1 be integers and suppose there are some common primes in the
unique factorizations (8). By 2.3.14 this happens ⇔ gcd(a, b) > 1. If the primes in common
are {u1, . . . , uℓ} = sp(a) ∩ sp(b) let’s relabel terms in (8) as follows

a = ur1

1 · · ·urℓ

ℓ · prℓ+1

ℓ+1 · · · prm
m b = us1

1 · · ·usℓ

ℓ · qsℓ+1

ℓ+1 · · · qsk

k (with ri, si > 0)

where {pℓ+1, . . . , pm}∩{qℓ+1, . . . , qk} = ∅. (Either of the sets {pi}, {qj} might be empty.) Prove
that

(9) gcd(a, b) = uc1

1 · · ·ucℓ

ℓ where ci = min{ri, si} for each index 1 ≤ i ≤ ℓ �

Note: As in 2.3.14, the gcd is 1 if there are no prime divisors in common. �

*2.3.20 Exercise. If a, b 6= 0 are not relatively prime, prove that

a′ =
a

gcd(a, b)
and b′ =

b

gcd(a, b)

are relatively prime. �

The following observation is useful in finding prime factorizations because it limits the range of
integers that must be examined to find the smallest prime divisor of a non-prime integer.

22



*2.3.21 Exercise. If n = p1 · · · pr with each pi > 1 a prime (repeats allowed) and r ≥ 2 (so n
is not already prime), show that pi ≤

√
n for some index i. �

*2.3.22 Exercise. Which of the following integers are prime? Explain your answer, and if n
is not prime, find its prime factorization.

(a) n = 17 (b) n = 517 (c) n = 518 (d) n = 54 (e) n = 1159 �

2.3.23 Exercise. List all primes such that 1 < p < 200. �

*2.3.24 Exercise. If p > 1 is a prime and if n 6= 0 prove that gcd(p, n) 6= 1 ⇔ p divides n.
Hint: Recall 2.3.5. �

*2.3.25 Exercise. If a, b, c 6= 0 is it true that gcd(a, b, c) = gcd(a, gcd(b, c))? Prove or provide
a counterexample.
Note: You could explore this using unique factorization (as in 2.3.19), or using the basic defi-
nitions of gcd in terms of divisibility (as in 2.2.11 or 2.2.17). �

2.3.26 Exercise. Describing gcd in terms of prime factorizations as in 2.3.17, explain the
difference between a collection of integers a1, . . . , an 6= 0 being “jointly relatively prime,” so
gcd(a1, . . . , an) = 1, and being “pairwise relatively prime,” so gcd(ai, aj) = 1 for i 6= j. �

2.3.27 Exercise. The least common multiple lcm(a1, . . . , an) of integers ai > 0 is the
smallest positive integer d (in the sense of divisibility) such that ai|d for all i.

(a) Give a precise version of this definition and prove that the lcm is unique if it
exists.

(b) If p1, . . . , pr are distinct primes and positive integers a, b > 1 have prime
decompositions a =

∏r

i=1 p
mi

i , b =
∏r

i=1 p
ni

i (with mi, ni ≥ 0, allowing some
multiplicities to be zero), prove that lcm(a, b) exists and is given by

lcm(a, b) =

r
∏

i=1

psi

i where si = max{mi, ni} for each i

(compare with the identity (9) for gcd). What happens when a = 1 or b = 1?

(c) If a, b, c > 1 how do you describe lcm(a, b, c) in terms of the prime factoriza-
tions? �

2.3.28 Exercise. If a, b, c > 1 is it true that lcm(a, b, c) = lcm(a, lcm(b, c))? Prove or provide
a counterexample. �

2.4 Modular Arithmetic in Zn Revisited.

In Section 1.5 of Chapter 1 we introduced the concept of an equivalence, or RST relation x ∼ y
in a set X , and the associated quotient space X/R consisting of the equivalence classes

[a] = {x ∈ X : x ∼ a}

determined by the relation. We then explained how to create a new algebraic systems (Zn,+, · )
for each integer n ∈ N by imposing the “congruence relation” a ≡ b (mod n) on the system of
integers (Z,+, · ). We recall that definition:

2.4.1 Definition (Congruence mod n). Fix an integer n > 1 and define the following rst
relation in X = Z :

a ≡ b (mod n) ⇔ b− a is a multiple of n

⇔ b = a+ nk for some k ∈ Z

⇔ b ∈ a+ nZ = {a+ nk : k ∈ Z}(10)

⇔ b+ nZ = a+ nZ
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It is easily seen that this defines a relation that is reflexive, symmetric, and transitive. In plain

English, the relation a ≡ b (mod n) is read as: “a is congruent to b modulo the integer
n,” and for this reason the equivalence classes

[a] = {b ∈ Z : b ≡ a(mod n)} = {a+ kn : k ∈ Z} = a+ nZ

are referred to as the (mod n) congruence classes in Z.

The quotient space X/R is denoted by Zn; its elements are the distinct (mod n) congruence

classes in Z. The associated quotient map π = πn : Z → Zn is given by π : a→ [a] = a+ nZ.

Obviously there are exactly n classes, namely

[0] = 0 + nZ = nZ [1] = 1 + nZ . . . [n− 1] = (n− 1) + nZ

because if we start with some k ∈ Z we can add or subtract whole multiples of n to arrive at
a (unique) equivalent point k′ such that 0 ≤ k′ < n. We often describe the classes in Zn by
choosing particular class representatives. Of course these representatives are not unique, so we
could also write [n− 1] = [−1], [n− 2] = [−2] etc. and sometimes it is useful to do so.

We then showed that the operations (+) and (·) in Z induce corresponding operations in
the quotient space Zn of congruence classes, and that the induced operations inherit many
properties from Z.

2.4.2 Theorem (Algebraic Structure in the Quotient Space Zn). Fix an integer n > 1,
let Zn be the quotient space of (mod n) congruence classes and let π : Z → Zn be the quotient

map. In Zn define operations

(11) [a] ⊕ [b] = [a+ b] and [a] ⊙ [b] = [ab]

for a, b ∈ Z. These operations are well-defined despite the fact that class representatives are used

to define them. They satisfy all the rules governing commutative rings set forth in Axioms I.
In particular

(a) The element [0] is the zero element with respect to the ⊕ operation

(b) The element [1] is the multiplicative identity element with respect to the ⊙
operation.

Furthermore the quotient map π : Z → Zn intertwines all operations, in the sense that

(12) π(a+ b) = π(a) ⊕ π(b) and π(a · b) = π(a) ⊙ π(b)

for all a, b ∈ Z.

The algebraic structure of Zn equipped with the (+) operation is pretty simple, but the
properties of the multiplication operation ( · ) are more subtle. Our intent in this section is
to take a closer look at the set of units Un in Zn. Recall that an element [a] ∈ Zn has a
multiplicative inverse if there exists some [k] ∈ Zn such that [k] · [a] = [a] · [k] = [1]. If it
exists this inverse, or “reciprocal,” is denoted by [a]−1. The invertible elements in Zn are the
units of the system (Zn,+, · ); we denote them by Un. The zero element [0] certainly cannot
be a unit, and Un always contains the elements [1] and −[1] = [−1] = [n− 1], which might be
the only units.

In the exercises of Section 1.5 we showed by way of specific examples that the nature of the
units Un varies greatly with the modulus n.

• In Z5 and Z7 every nonzero element has a multiplicative inverse, so the units in these
systems are U5 = Z×

5 = {[x] ∈ Z5 : [x] 6= [0]} and similarly U7 = Z×
7 .
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• In Z12 there are only four units [1], [5], [7], [11]. Notice that [11] = [−1] = −[1] and
[7] = −[5]. This system also has zero divisors: [4] · [3] = [12] = [0] even though [3] 6= [0]
and [4] 6= [0].

Nevertheless there are important general results concerning units, valid for all moduli. The
first asserts that the system of units is closed under the multiplication operation operation ( · )
in Zn

*2.4.3 Exercise. Verify that the set of units Un in Zn is closed under multiplication:

(a) If [a], [b] ∈ Un, then [a][b] = [ab] also

(b) If [a] is a unit show that −[a] is a unit and find its inverse.

Both 1 and −1 are always units in Zn. Can −[1] = [1] in Zn for any n ≥ 2? �

*2.4.4 Exercise. Determine the set of units Un when:

(a) n = 4, (b) n = 7, (c) n = 12.

Are any of these systems “closed” under the (+) operation? �

2.4.5 Exercise. If an element [a] ∈ Zn has a multiplicative inverse, prove that this inverse
element is unique – i.e. if [u] · [a] = [1] and [u′] · [a] = [1], then [u′] = [u]. �

The set of units (Un, · ) equipped with multiplication as an operation mapping Un ×Un → Un

is a new kind of algebraic structure, a group. We will spend quite a bit of time discussing
groups in the next chapters of these Notes, so we only mention the axioms they satisfy.

Group Axioms. The system (Un, · ) has the following algebraic properties.

(a) Associativity: [k]([ℓ][m]) = ([k][ℓ])[m] for all [k], [ℓ], [m].

(b) Identity Element: There exists an element [1] such that [1][a] = [a][1] =
[a] for all [a]

(c) Inverses Exist: For every [a] ∈ Un there exists an element [b] such that
[a][b] = [b][a] = [1].

Any system (G, · ) satisfying these axioms is called a group. The particular G =
(Un, · ) is a commutative group because [a][b] = [b][a].

It turns out that the units in Zn can be determined easily without any need for multiplication
tables or trial-and-error calculations. The simplest outcome occurs when n is a prime.

2.4.6 Theorem. If n > 1 the group of units in Zn is

(13) Un = {[k] ∈ Zn : 1 ≤ k ≤ n− 1 and gcd(k, n) = 1}

Proof: Assume 1 ≤ k ≤ n− 1 and gcd(k, n) = 1. Then there must exist integers r, s such that
rk + sn = 1. Passing to Zn, we have [sn] = [0] and [r][k] = [r][k] + [0] = [1], so [k] is a unit.

Conversely, if 1 ≤ k ≤ n − 1 and [k] is a unit, then there will be some [ℓ] ∈ Zn such that
[1] = [k][ℓ] = [kℓ]. Since kℓ ≡ 1 (mod n) there exists some s ∈ Z such that kℓ = 1 + sn. That
means kℓ+ (−s)n = 1, and hence gcd(k, n) = min{Λ ∩ N} = 1 by 2.3.2. �

2.4.7 Corollary. If n > 1 is an integer then all elements [a] 6= [0] in Zn have multiplicative

inverses ⇔ the modulus n is a prime. This means Zp is a number field for each prime p > 1i,
in which division is allowed by taking

[a]/[n] = [a][b]−1

for all pairs such that [b] 6= [0].
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Proof: If n = p > 1 is a prime then gcd(k, p) = 1 for all 1 ≤ k ≤ p− 1 (Why?), so by 2.4.6 all
nonzero elements in Zp have multiplicative inverses. Conversely if n is a non-prime it will have
proper divisors 1 < a, b < n such that ab = n, which means that [a] and [b] are zero divisors
since [a], [b] 6= [0] while [a] · [b] = [0] in Zn. No zero divisor [a] can be invertible, for if [a] had
an inverse [c] that would mean

[0] = [c] · [0] = [c] · ([a] · [b]) = ([c] · [a]) · [b] = [1] · [b] = [b] 6= [0]

which is impossible. �

In particular if p > 1 is a prime the set of units Up in Zp is equal to the set Z×
p of all nonzero

elements, which has cardinality |Up| = p− 1.
The proof of 2.4.6 also suggests how to compute the multiplicative inverse of a unit [k] in Zn:

find integers r, s such that rk+ sn = 1 (whose existence is guaranteed if gcd = 1). Then rk ≡ 1
(mod n) and [k]−1 = [r]. The Extended GCD Algorithm is a fast algorithm for computing such
a pair r, s.

2.4.8 Exercise. Find the multiplicative inverses [a]−1 for

(a) All [a] 6= [0] in Z7.

(b) Each of the units [1], [5], [7], [11] in Z12.

(c) Determine the units U6 in Z6 and their multiplicative inverses.

Hint: You can save some effort using [−a]−1 = ([−1] [a])
−1

= [−1] · [a]−1. �

2.4.9 Exercise. Identify all elements in Z18 that have multiplicative inverses. Then find the
inverse of [5] in Z18 by finding integers r, s such that 5r + 18s = 1 �

2.4.10 Exercise. Find the multiplicative inverse [25]−1 in the system Zn when n = 16184. �

2.4.11 Exercise. Explain why the commutative ring with identity (Zn,+, · ) cannot be
equipped with an order relation “[k] > [0]” satisfying the conditions in Axiom II. �
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Appendix A: Equivalence of the Induction and

Minimum Properties.

In this appendix we prove that the Induction Principle (ind) in 2.1.11 is equivalent to the
Minimum Property (min) of 2.1.17.

A.1 Theorem. Let (R,+, ·, >) be a commutative ordered ring with identity, so the conditions

in Axioms I and II are satisfied. Then the following properties are equivalent.

(a) Induction Principle: If S is a subset of the positive elements P
R

= {x ∈ R :
x > 0} in R having the inductive properties set forth in 2.1.11, then S = P

R
.

(b) Minimum Property: If S is a nonempty subset of the positive elements P
R
,

then S contains a smallest element s0 such that s0 ∈ S and s0 ≤ s for all s ∈ S.

Proof: (ind) ⇒ (min). If R has the Induction Property (Axiom III) we have already seen
that R is essentially the system of natural integers, so R = Z, PR = N, and by 2.1.15 if n is a
positive element there are no integers between n and n + 1. If a ≤ b are positive integers we
define the interval between them to be [a, b] = {x ∈ R : a ≤ x ≤ b}.

We now argue by contradiction. Suppose there is some nonempty set S ⊆ N that has no
smallest element. Consider the set A = {n ∈ N : [1, n] disjoint from S}. We must have 1 ∈ A,
because 1 /∈ A⇒ 1 ∈ S and then 1 would be the smallest element in S (recall 2.1.12), contrary
to hypothesis. Next suppose n ∈ A, so that [1, n]∩S = ∅; we claim that n+1 is also in A. If not,
the interval [1, n+ 1] would meet S. But by 2.1.15 we have [1, n+ 1] = [1, n]∪ {n+ 1} (disjoint
union), and since [1, n]∩S = ∅ that would force n+1 to lie in S. Every other element k 6= n+1
in S satisfies k > n + 1 since it cannot lie in [1, n] and N = [1, n + 1] ∪ {k ∈ N : k > n + 1}.
Thus S would have n+ 1 as its smallest element. Contradiction.

We have shown that A has the inductive properties of 2.1.11, so by the Induction Axiom
A = N. That leaves nowhere for S to go, because

⋃

n∈N
[1, n] = N is disjoint from S, while

S ⊆ N, forcing S = ∅. That contradicts our standing hypothesis that S is nonempty. �

Proof: (min) ⇒ (ind). We start by showing that the identity element 1 is the smallest element
in P

R
. We cannot invoke 2.1.12 since that statement was proved using the Induction Axiom,

which is not being assumed here. We need an explanation based on the min Axiom.
Let x0 be the smallest positive element in P

R
, whose existence is guaranteed buy the min

Axiom. If x0 6= 1 we must have 0 < x0 < 1 and then

0 < x2
0 = x0 · x0 < 1 · x0 = x0

That would mean x2
0 > 0 is smaller than the smallest element in P

R
, which is absurd.

Now consider a subset S ⊆ P
R

having the inductive properties 2.1.11; we must prove that
S = P

R
. If S 6= P

R
the difference set A = P

R
∼ S is nonempty, and by the min Hypothesis

has a smallest element a0. As noted above, we must have a0 ≥ 1, but we can’t have a0 = 1
since 1 ∈ S by definition. Thus a0 > 1 and b = a0 − 1 > 0 is an element of P

R
smaller than

a0; that means it must lie within S, by definition of A. But the inductive property 2.1.11 of S
then implies that b + 1 = a0 ∈ S, and that is a contradiction. Conclusion: P

R
= S, and the

Induction Axiom is valid in R. That concludes the proof of the theorem. �
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Appendix B: The Schroeder-Bernstein Theorem.

Next we prove the Schroeder-Bernstein Theorem. The discussion is keyed to the situation
shown in Figure B.1.

B.1. Theorem (Schroeder-Bernstein). Let A,B be nonempty sets, finite or not, and

suppose that

(i) A ≈ B′ for some subset B′ ⊆ B, so there is some one-to-one map f : A→ B
whose range is B′.

(ii) B ≈ A′ for some subset A′ ⊆ A, so there is some one-to-one map g : B → A
whose range is A′.

Then there exists a bijection A ≈ B.

Proof: As shown in Figure B.1, we consider the recursively defined decreasing families of

Figure B.1. The steps in proving the Schroeder-Bernstein Theorem.

image sets

A′ = A′
1 = g(B) ⊇ A′

2 = g(B′
1) ⊇ A′

3 = g(B′
2) ⊇ . . . ⊇ A′

∞ =

∞
⋂

n=1

A′
n (the residual set in A)

B′ = B′
1 = f(A) ⊇ B′

2 = f(A′
1) ⊇ B′

3 = f(A′
2) ⊇ . . . ⊇ B′

∞ =

∞
⋂

n=1

B′
n (the residual set in B)

The disjoint sets A1, A2, . . . and B1, B2, . . . in Figure B.1 are defined as set-theoretic differences,
taking A1 = A ∼ A′

1, A2 = A′
1 ∼ A′

2, . . . and so on. There are obvious bijections between pairs

A2n−1 ∪A2n and B2n−1 ∪B2n, obtained by taking

{

ψ : A2n−1 → B2n with ψ = f on A2n−1

ψ : A2n → B2n−1 with ψ = g−1 on B2n−1

as illustrated in Figure B.1. We get a bijection between the complements A ∼ A′
∞ and B ∼ B′

∞

of the residual sets.
As for the “residual sets” (heavily shaded in Figure B.1), we now show that f : A′

∞ → B′
∞

is already a bijection, so we may define ψ = f there to get the desired bijection ψ : A→ B. Our
introductory remarks on set theory stressed the fact that an arbitrary map φ : X → Y might
fail to preserve intersections of sets (with φ(A1 ∩ A2) 6= φ(A1) ∩ φ(A2)), although it always

28



respects union of sets (so φ(
⋃∞

n=1An) =
⋃∞

n=1 φ(An) ). One exception occurs when φ is one
to one; then both intersections and unions are preserved. This applies in the present situation
because f and g are one-to-one maps.

It suffices to show f(A′
∞) = B′

∞. By the preceding remark

f(
∞
⋂

n=1

A′
n) = (

∞
⋂

n=1

f(A′
n)) =

∞
⋂

n=1

B′
n+1 =

∞
⋂

n=2

B′
n

Since the family of sets {B′
m} is decreasing with n, the last intersection is equal to

⋂∞

n=1B
′
n =

B′
∞, as required. That completes the proof. �

Note that we might have to perform a countably infinite set of slicing-and-dicing operations on
the original maps f and g to construct the final map ψ.

29



Figure C.1. The maps φ, ψ, ψ ◦ φ in Case 2 of Proposition C.1 are all bijections. The new map
ψ ◦ φ maps [1, m+ 1] → [1, n] and m+ 1 to n.

Appendix C: Cardinality |A| = n of a Finite Set Makes Sense.

Here we give a self-contained proof that if A ≈ [1, n] the value of n ∈ N is uniquely determined.

C.1. Theorem (Finite Cardinalities). Given nonempty finite sets with |A| = m and |B| = n
we have A ≈ B ⇔ m = n. Put another way, there cannot be distinct integers m,n ∈ N such

that A ≈ [1,m] and A ≈ [1, n]. Thus each finite set is associated with a unique natural number

n ∈ N, its cardinality.

Proof: |A| = m means A ≈ [1,m]; likewise we have B ≈ [1, n], so by transitivity of the (≈)
relation it suffices to prove there is a bijection between intervals [1,m] and [1, n] ⇔ m = n. The
implication (⇐) is trivial; furthermore, by relabeling things we can assume m ≥ n.

Proof (⇒): We now argue by induction on m, taking as our inductive hypothesis

(C.1) Inductive Hypothesis P (m): If 1 ≤ n ≤ m and [1, n] ≈ [1,m], then n = m.

This is obviously true if m = 1, for then 1 ≤ n ≤ m and m = n = 1. For the induction step,
consider any integer m > 1 such that (C.1) is true. To complete the induction step we must
show that (C.1) is true for the successor m + 1; by the Induction Axiom it is then true for all
m ∈ N.

An integer n ≤ m+ 1 is either equal to m+ 1 or n < m+ 1. In the first case our goal is in
hand and there is nothing to prove; otherwise we have n < m + 1, and then by 2.1.15 we get
n ≤ m. The hypothesis [1, n] ≈ [1,m+ 1] means that there is a bijection φ : [1,m+ 1] → [1, n];
our task is to demonstrate that m+ 1 = n.

We can’t have n = 1. If that were so [1, n] would consist of a single point, but since φ is a
bijection [1,m+ 1] would consist of a single point too. Since m > 1 we would have m ≥ 2, so
[1,m + 1] ⊇ [1, 2] = {1} ∪ {2} would contain at least two points while [1, n] = [1, 1] contains
only one. That is impossible, so the assumption n = 1 leads to a contradiction and cannot be
true. We must therefore have n > 1

Once we know n > 1 it follows that n− 1 > 0, so n− 1 ∈ N and [1, n− 1] is a well-defined
interval in N. By 2.1.15 we get disjoint decompositions of our intervals into nonempty sets

(C.2) [1,m+ 1] = [1,m] ∪ {m+ 1} [1, n] = [1, n− 1] ∪ {n}
The bijection φ : [1,m + 1] → [1, n] must send m + 1 somewhere in [1, n]. There are two
possibilities.

Case 1: φ(m+ 1) = n. By (C.2) if φ is a bijection such that φ(m+ 1) = n, φ must map [1,m]
bijectively to [1, n− 1]. Since n ≤ m+ 1 ⇒ n− 1 ≤ m we may apply the Inductive Hypothesis
(C.1) to conclude that n− 1 = m, which of course implies that n = m+ 1 as desired.

Case 2: φ(m + 1) = k 6= n. Then (see Figure C.1) there is a unique ℓ ∈ [1,m + 1] such
that φ(ℓ) = n; obviously ℓ 6= m + 1 since m + 1 maps to k 6= n. Now define a new bijection
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ψ : [1, n] → [1, n] as shown in Figure C.1, letting

ψ(k) = n ψ(n) = k ψ(j) = φ(j) for all j 6= k, n

The composite f = ψ ◦ φ maps [1,m+ 1] one-to-one onto [1, n], but now f(m+ 1) = n, which
puts us back into Case 1. In either case we conclude that n = m+ 1, as required to finish the
proof. �
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